victorzv2>>Вы правы, что эксплуатационная перегрузка для машин типа Боинг-747 будет в районе 2,2 - 2,5 (это для какой-то максимальной массы). Но тогда разрушающая перегрузка будет всего 3,3 - 3,8 (коэффициент безопасности 1,5). Даже при почти пустом самолете перегрузки порядка 5,5 для такого Боинга недостижимы.[»]Вуду>- Перегрузки-то как раз достижимы, причём - при полном неучастии пилотов, я уже говорил - из-за простого попадания в вертикальный порыв, коих - тьма-тьмущая. Вуду>Поэтому мне совершенно не верится, что Боинг сломается на ny=3.3. Вуду>Такой самолёт просто ни одна компания, занимающаяся воздушными перевозками, не купит... [»]
Вот же Фома неверуюший.
А еще и авиатором себя считает...
Привожу выдержки из ФАР-25 по которому Боинги сертифицированы.
Sec. 25.301 - Loads.
(a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by prescribed factors of safety). Unless otherwise provided, prescribed loads are limit loads.
© If deflections under load would significantly change the distribution of external or internal loads, this redistribution must be taken into account.
Sec. 25.303 - Factor of safety.
Unless otherwise specified, a factor of safety of 1.5 must be applied to the prescribed limit load which are considered external loads on the structure. When a loading condition is prescribed in terms of ultimate loads, a factor of safety need not be applied unless otherwise specified.
Sec. 25.305 - Strength and deformation.
(a) The structure must be able to support limit loads without detrimental permanent deformation. At any load up to limit loads, the deformation may not interfere with safe operation.
(b) The structure must be able to support ultimate loads without failure for at least 3 seconds. However, when proof of strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation induced by the loading. When analytical methods are used to show compliance with the ultimate load strength requirements, it must be shown that —
(1) The effects of deformation are not significant;
(2) The deformations involved are fully accounted for in the analysis; or
(3) The methods and assumptions used are sufficient to cover the effects of these deformations.
Sec. 25.337 - Limit maneuvering load factors.
(a) Except where limited by maximum (static) lift coefficients, the airplane is assumed to be subjected to symmetrical maneuvers resulting in the limit maneuvering load factors prescribed in this section. Pitching velocities appropriate to the corresponding pull-up and steady turn maneuvers must be taken into account.
(b) The positive limit maneuvering load factor n for any speed up to Vn may not be less than 2.1+24,000/ (W +10,000) except that n may not be less than 2.5 and need not be greater than 3.8 — where W is the design maximum takeoff weight.
© The negative limit maneuvering load factor —
(1) May not be less than −1.0 at speeds up to VC; and
(2) Must vary linearly with speed from the value at VC to zero at VD.
(d) Maneuvering load factors lower than those specified in this section may be used if the airplane has design features that make it impossible to exceed these values in flight.
Sec. 25.341 - Gust and turbulence loads.
(a) Discrete Gust Design Criteria. The airplane is assumed to be subjected to symmetrical vertical and lateral gusts in level flight. Limit gust loads must be determined in accordance with the provisions:
(1) Loads on each part of the structure must be determined by dynamic analysis. The analysis must take into account unsteady aerodynamic characteristics and all significant structural degrees of freedom including rigid body motions.
(2) The shape of the gust must be:
for 0 ≤ s ≤ 2H
where —
s=distance penetrated into the gust (feet);
Uds=the design gust velocity in equivalent airspeed specified in paragraph (a)(4) of this section; and
H=the gust gradient which is the distance (feet) parallel to the airplane's flight path for the gust to reach its peak velocity.
(3) A sufficient number of gust gradient distances in the range 30 feet to 350 feet must be investigated to find the critical response for each load quantity.
(4) The design gust velocity must be:
where —
Uref=the reference gust velocity in equivalent airspeed defined in paragraph (a)(5) of this section.
Fg=the flight profile alleviation factor defined in paragraph (a)(6) of this section.
(5) The following reference gust velocities apply:
(i) At the airplane design speed VC: Positive and negative gusts with reference gust velocities of 56.0 ft/sec EAS must be considered at sea level. The reference gust velocity may be reduced linearly from 56.0 ft/sec EAS at sea level to 44.0 ft/sec EAS at 15000 feet. The reference gust velocity may be further reduced linearly from 44.0 ft/sec EAS at 15000 feet to 26.0 ft/sec EAS at 50000 feet.
(ii) At the airplane design speed VD: The reference gust velocity must be 0.5 times the value obtained under §25.341(a)(5)(i).
(6) The flight profile alleviation factor, Fg, must be increased linearly from the sea level value to a value of 1.0 at the maximum operating altitude defined in §25.1527. At sea level, the flight profile alleviation factor is determined by the following equation:
Zmo=Maximum operating altitude defined in §25.1527.
(7) When a stability augmentation system is included in the analysis, the effect of any significant system nonlinearities should be accounted for when deriving limit loads from limit gust conditions.
(b) Continuous Gust Design Criteria. The dynamic response of the airplane to vertical and lateral continuous turbulence must be taken into account. The continuous gust design criteria of appendix G of this part must be used to establish the dynamic response unless more rational criteria are shown.
В электронной форме отсутствует формула для расчета перегрузки при действии порыва.
При отсутствии более точных данных можно использовать формулу:
n = 1 + Fg*Uds*V*(Cya)/[498*(W/S)]
Единицы измерения - американские.
В итоге эксплуатационная перегрузка получается порядка 2.5, а расчетная (разрушющая) - соответственно 3.8. [Но это при максимальной полетной массе]. И ничего, покупают такие Боинги.