Ставиться задача, увеличить скорость космического аппарата с 0 км/с до 8 км/с. Скорость космической станции 8 км/с, скорость истечения плазмы 10 км/с. В результате сложения скоростей, скорость поступающей в двигатель плазмы возрастает с 18км/с до 26 км/с. При КПД кинетического двигателя 70%, и оптимальном режиме его работы, масса космического аппарата уменьшится со 100 т до 20 т. Масса рабочего тела 80 т, объем 40 м³ (при плотности 2000 кг/м³).
Предположим, продолжительность разгона 400 секунд, средний расход бортовых запасов рабочего тела 200 кг/с. Ракетный двигатель космической станции в среднем должен расходовать не менее 83 кг/с массы. При скорости истечения 10 км/с это соответствует мощности более 4 млн кВт. Для создания потока плазмы такой мощности, может использоваться термоэлектрический двигатель, с солнечной или ядерной энергоустановкой. По некоторым оценкам, удельная масса таких систем, примерно 1 кг/кВт. Таким образом, масса космической станции составит не менее 4000 т. Если полезная нагрузка космического аппарата 5 т, такая транспортная система обеспечит грузопоток порядка 500 т в сутки (с учетом того, что половина ресурсов массы и времени, расходуется на коррекцию орбиты станции).
Для многократного использования кинетических двигателей, необходимо создать недорогой атмосферно-космический аппарат, способный возвращаться на Землю. Его возвращение можно организовать таким образом, чтобы аэродинамическая сила была направлена к центру Земли, препятствуя преждевременному выходу аппарата из атмосферы. Аппарат сможет сделать несколько витков вокруг Земли, двигаясь на оптимальной высоте в верхних слоях атмосферы, со скоростью значительно превышающей первую космическую. При этом избыток тепла будет отводиться за счет излучения, скорость полета постепенно уменьшится, без перегрузок и перегрева конструкции. Это позволит упростить теплозащиту, снизить необходимый запас прочности. В результате уменьшится масса и стоимость атмосферно-космического аппарата, увеличится срок его службы. После погашения избыточной скорости полета, нужно направить аэродинамическую силу в противоположном направлении. Это можно осуществить за счет поворота аппарата вокруг продольной оси на 180°, или путем изменения геометрии его несущих поверхностей (крыльев).
Указанный выше грузопоток, значительно превышает потребности ближайшего будущего. Вероятно, реализация таких транспортных систем сможет осуществляться в рамках программ космической энергетики. Основная задача заключается в создании потока плазмы (а не передвижении космической станции пространстве). Поэтому, большая масса и размеры энергоустановки и ракетного двигателя, не являются непреодолимым препятствием. Более серьезная проблема пополнение запасов массы. При грузопотоке 500 т затраты массы на создание потока плазмы, составляют более 7000 т. Впрочем, если доставлять массу с Луны, затраты на ее транспортировку составят не более 15...20% общих затрат энергии.
Интересный способ разгона с использованием реактивной струи, полет в кильватере другого космического аппарата, на оптимальном расстоянии. Такой полет возможен, если «ведущий» аппарат оснащен ракетным двигателем, со скоростью истечения газов десятки километров в секунду. Лишь в этом случае кинетический двигатель, установленный на «ведомом» космическом аппарате, будет развивать достаточно высокую удельную тягу. Захваченный газ состоит из частиц с высокой степенью ионизации, при рекомбинации которых выделяется большое количество дополнительной энергии. Следовательно, при скорости захваченного газа 20 км/с, максимально возможная удельная тяга кинетического двигателя значительно выше 460 с (при КПД 70%).
Кроме кинетического двигателя, возможны другие варианты двигательных установок нового типа. Например, двигатель ЭОЛ. Этот двигатель состоит из массозаборника, МГД-генератора и электрореактивного движителя. Принцип действия следующий. Захваченный магнитной воронкой ионизированный газ проходит через канал МГД-генератора и, через реактивное сопло, вытекает наружу. При частичном торможении газа в канале МГД-генератора, вырабатывается электрический ток, который приводит в действие реактивный движитель и все бортовые системы. Сила тяги электрореактивного движителя, превышает силу, возникающую в результате торможения газа внутри канала МГД-генератора. В результате, космический аппарат будет увеличивать скорость полета, отбрасывая часть своей массы.
Чтобы получить наибольшую удельную тягу, отработанный газ должен истекать из реактивного сопла со скоростью, равной скорости истечения рабочего тела из реактивного движителя. Для создания силы тяги целесообразно использовать термоэлектрические движители. В таких движителях электрический ток нагревает рабочее тело до высокой температуры, в результате скорость истечения может достигать несколько десятков километров в секунду. Регулируя температуру рабочего тела, можно регулировать скорость его истечения. Кроме того, термоэлектрический движитель развивает значительную силу тяги.
Плотность межпланетной среды переменная величина, и может колебаться в очень широких пределах. При незначительной плотности около 10–17 кг/м³, эффективность входного устройства будет низкой. Чтобы обеспечить поступление ежесекундно около 1 кг плазмы, при скорости полета 50 км/с, нужна магнитная воронка диаметром около 1600 км. Создание подобного устройства весьма проблематично. Очевидно, в межпланетном пространстве применение двигателя ЭОЛ будет возможным, лишь при наличии соответствующих благоприятных обстоятельств. Эти обстоятельства, могут возникать в результате различных космических процессов, или создаваться искусственным путем.
При прохождении ядра кометы вблизи Солнца, образуется газово-пылевое облако. Газы, из которых оно состоит, ионизируются под действием солнечных лучей и могут быть захвачены магнитной воронкой. Кроме твердого ядра размером 10...50 км, в строении комет выделяют газово-пылевую оболочку (размеры достигают иногда 2 млн км), и хвост (он простирается иногда на 150 млн км). Если большие и малые планеты вращаются вокруг Солнца в одном направлении, то кометы не придерживаются никаких правил. В частности, комета Галлея движется практически навстречу Земле. Во время очередного прохождения кометы Галлея вблизи Солнца в марте 1986 года, автоматические межпланетные станции «Вега-1» и «Вега-2» пролетели на расстоянии всего несколько тысяч километров от ядра, через плотную газово-пылевую оболочку со скоростью около 80 км/с.
Предположим, средняя плотность плазмы в газово-пылевом облаке 10–14 кг/м³. Магнитная воронка диаметром около 40 км, обеспечит ежесекундно поступление 1 кг плазмы. При скорости 80 км/с, кинетическая энергия 1 кг плазмы 3200 тыс. кДж. При общем КПД системы «магнитная воронка – МГД-генератор» 70%, получим 2240 тыс. кДж электрического тока. Из них 50 тыс. кДж, расходует холодильная установка. Остальные 2190 тыс. кДж расходует электрореактивный движитель. При КПД движителя 70%, кинетическая энергия реактивной струи составит 1533 тыс. кДж. Допустим, струя реактивного движителя истекает со скоростью 25 740 м/с, ее масса 4,628 кг (импульс ускорения 119 125 кг∙м/с). Захваченная плазма проходит через канал МГД-генератора, и вытекает в межпланетное пространство со скоростью 25 740 м/с, ее масса 1 кг (импульс торможения 54 260 кг∙м/с). Если разделить приращение импульса (64 865 кг∙м/с) на расход бортовых запасов реактивной массы (4,628 кг), получим эффективную скорость истечения (14 016 м/с). Если разделить эффективную скорость истечения, на коэффициент 9,81 м/с², получим удельную тягу 1430 с. Тяговое усилие двигательной системы 6618 кг.
Принимая массу космического аппарата равной 500 т, получаем ускорение 0,130 м/с². Если протяженность газово-пылевого облака 1 млн км, продолжительность работы двигательной установки примерно 210 минут (при относительной средней скорости полета 80 км/с). Общее приращение скорости составит лишь 1625 м/с. Тяговое усилие двигательной установки (ускорение космического аппарата) можно значительно увеличить, за счет некоторого снижения удельной тяги. Простой расчет показывает следующее. Если увеличить ежесекундный расход бортовых запасов реактивной массы в 10 раз (46,28 кг/с), удельная тяга уменьшится в 2,1 раза (670 с). Тяговое усилие возрастет в 4,7 раза (31 000 кг). Ускорение космического аппарата составит 0,608 м/с², общее приращение скорости около 7600 м/с.