Реклама Google — средство выживания форумов :)
Орбитальная регистрация взаимодействия Луны с потоком электрически заряженных частиц солнечного ветра, а также изучение ее магнитного поля позволили рассчитать изменение электропроводности лунных недр с глубиной. Сопоставляя эти данные с зависимостью электропроводности лунных пород от температуры и давления, удалось установить, что температура в недрах Луны сначала растет с глубиной очень быстро (от 0°С на поверхности до 830° С на 200-метровой глубине), а затем более медленно, достигая 1500° С на глубине 1000 км.
На сегодняшний день предметом исследования геологии является уникальный объект. В этой связи многие положения данной науки представляют собой «экстраполяцию по одной точке», статус геологических законов остается неясным. Понятно, что такое положение дел замедляет развитие теоретической геологии. Суждение, согласно которому геология лишь тогда станет наукой, когда выйдет за пределы Земли и получит в свое распоряжение материал для сравнения, лишь отчасти преувеличено.
Может быть, наиболее важным является «детский вопрос»: применимы ли основные положения глобальной тектоники плит к другим небесным телам, кроме Земли? Имеются в виду, конечно, планеты земной группы — прежде всего Марс и Венера, затем Меркурий, Луна и другие крупные спутники.
Отрицательный ответ на этот вопрос станет новым — и принципиальным — свидетельством уникальности Земли. Трудно переоценить влияние, которое данная информация окажет на развитие науки и философии. Во всяком случае, речь идет о мировоззренческом перевороте, сравнимом с коперниковским.
Положительный ответ, который представляется мне более вероятным, даст возможность построить сравнительную геотектонику и придать модели литосферных плит статус всеобщего геологического закона. Возможно, сопоставление разных геотектоник приведет к пониманию природы физических сил, перемещающих материки , и созданию последовательной математической геологии. Это, в свою очередь, послужит основой точной геологической прогностики — как в отношении землетрясений и вулканических извержений, так и в отношении месторождений полезных ископаемых.
Здесь следует подчеркнуть, что некоторые важные для понимания законов движения земной коры эксперименты нельзя поставить на Земле, поскольку они могут сопровождаться катастрофическими (притом непредсказуемыми по месту, времени, масштабу) разрушениями. К таким экспериментам относится, например, «прозвонка» литосферы мощными подземными ядерными взрывами в определенных «критических точках» плит.
Важнейшее научное значение будет иметь геологическое исследование пояса астероидов Представляется, что сравнительный анализ их состава позволит сделать далеко идущие выводы о генезисе Солнечной системы и, может быть, внести некоторые коррективы в представления о распределении в космосе химических элементов .
Представляет интерес и практическая космическая геология. Никто и, видимо, никогда не станет доставлять нефть с Марса, но если вдруг выяснится, что она там есть, это заметно повлияет на прогнозы относительно совокупных объемов земных запасов углеводородов. Что, между прочим, прямо отразится на ценах на нефть и опосредованно на политической ситуации вокруг Персидского залива.
То же самое касается расщепляющихся веществ и, в меньшей степени, рудных ископаемых.
Мы приходим выводу, что с научной и практической точек зрения стратегически важно расширить предметную область, изучаемую геологией, до «малой системы».
Причем использование автоматов для таких исследований практически бесперспективно — и именно в силу того, что на сегодняшний день геология не является наукой, в достаточной степени математизированной. Сугубо теоретически можно создать геологоразведывательную межпланетную станцию, но она обойдется много дороже пилотируемого полета (хотя цена последнего и заоблачна).