Реклама Google — средство выживания форумов :)
Будем наблюдать движущийся поперек луча зрения стабилизированный объект, подсвеченный непрерывным когерентным лазерным источником. Регистрация отраженного от него излучения производится гетеродинным фотоприемником с небольшой апертурой. Запись сигнала в течение времени t эквивалентна реализации одномерной апертуры длиной vt, где v – тангенциальная скорость движения объекта. Легко оценить потенциальную разрешающую способность такого метода. Посмотрим на околоземный спутник в верхней элонгации, летящий на высоте 500 км со скоростью 8 км/сек. За 0,1 секунды записи сигнала получим «одномерный телескоп» размером 800 метров, теоретически способный рассмотреть в видимом диапазоне детали спутника величиной в доли миллиметра. Неплохо для такого расстояния.
Разумеется, отраженный сигнал на таких расстояниях ослабевает на много порядков. Однако гетеродинный прием (когерентное смешивание с опорным излучением) в значительной степени компенсирует это ослабление. Ведь, как известно, выходной фототок приемника в этом случае пропорционален произведению амплитуд опорного излучения и приходящего сигнала. Будем увеличивать долю опорного излучения и тем самым усиливать весь сигнал.
Можно посмотреть с другой стороны. Спектр записанного сигнала с фотоприемника представляет собой набор доплеровских компонент, каждая из которых есть сумма вкладов от всех точек объекта, имеющих одинаковую лучевую скорость. Одномерное распределение отражающих точек на объекте определяет распределение спектральных линий по частоте. Полученный спектр и является по сути одномерным «изображением» объекта по координате «доплеровский сдвиг». Две точки нашего спутника, расположенные на расстоянии 1 мм друг от друга в плоскости, перпендикулярной лучу зрения, имеют разность лучевых скоростей порядка 0,01-0,02 мм/сек. (Отношение этой разности к скорости спутника равно отношению расстояния между точками к расстоянию до спутника). Разность доплеровских частот этих точек для видимой длины волны 0,5 мк составит (f=2V/λ) порядка 100 Гц. Спектр (доплеровское изображение) от всего микроспутника, скажем, размером 10 см, уложится в диапазон 10 кГц. Вполне измеримая величина.
Можно посмотреть и с третьей стороны. Эта технология представляет собой не что иное, как запись голограммы, т.е. интерференционной картины, возникающей при смешивании опорного и сигнального полей. Она содержит в себе амплитудную и фазовую информацию, достаточную для восстановления полного изображения объекта.
Таким образом, подсвечивая спутник лазером, регистрируя отраженный сигнал и смешивая его с опорным лучом от того же лазера, получим на фотоприемнике фототок, зависимость которого от времени отражает структуру светового поля вдоль «одномерной апертуры», длину которой, как уже было сказано, можно сделать достаточно большой.
Американская DARPA некоторое время назад финансировала программу SALTI, суть которой состояла в реализации подобной технологии. Предполагалось с летящего самолета лоцировать со сверхвысоким разрешением объекты на земле (танки, например), были получены некие обнадеживающие данные. Однако эту программу то ли закрыли, то ли засекретили в 2007 году и с тех пор про нее ничего не слышно. В России тоже кое-что делалось. Вот здесь можно посмотреть картинку, полученную на длине волны 10,6 мк.