На последних этапах остывания чёрных карликов (после 1015 лет) важную роль будет играть процесс гравитационного захвата и аннигиляции тёмной материи. В отсутствие дополнительного источника энергии чёрные карлики становились бы более холодными и тусклыми, пока их температура не сравнялась бы с фоновой температурой Вселенной. Однако благодаря энергии, которую они извлекают из аннигиляции тёмной материи, белые карлики смогут дополнительно излучать энергию на протяжении ещё очень долгого времени. Полная мощность излучения одного чёрного карлика, обусловленная процессом аннигиляции тёмной материи, составляет приблизительно 1015 ватт. И хотя эта незначительная мощность примерно в сто миллиардов (1011) раз слабее мощности излучения Солнца, именно этот механизм производства энергии будет главным в почти остывших чёрных карликах будущего. Такая выработка энергии будет продолжаться, пока галактическое гало остаётся целым — то есть в течение 1020 — 1025 лет[3][4]. Затем аннигиляция тёмной материи постепенно прекратится и они остынут окончательно.
Как мы уже говорили в первой главе, современные астрономы полагают, что большая доля массы Вселенной должна приходиться на небарионное вещество. Причем считается, что значительное количество этой необычной материи находится в галактических гало.
Один из кандидатов на роль темной материи получил название слабо взаимодействующих массивных частиц. Эти довольно странные частицы, масса которых в десять-сто раз превышает массу протона, взаимодействуют только посредством слабого ядерного взаимодействия и гравитации. Они не несут электрического заряда, вследствие чего безразличны к действию электромагнитной силы. Они также не восприимчивы к сильному взаимодействию, в силу чего не связываются друг с другом и не образуют ядер. Поскольку эти частицы взаимодействуют очень слабо, в рассеянных областях типа гало галактик они могут жить очень долго. В частности, они могут прожить куда дольше современного возраста Вселенной. Однако по истечении достаточно продолжительных промежутков времени эти частицы взаимодействуют с обычным веществом, что приводит к их взаимной аннигиляции.
Аннигиляция темной материи происходит при двух различных обстоятельствах. В первом случае, когда две частицы встречаются в галактическом гало, они могут вступить во взаимодействие, что приведет к их прямой взаимной аннигиляции. Во втором случае частицы захватываются остатками звезд, например белыми карликами, и впоследствии аннигилируют друг с другом уже внутри звездного ядра. Оба этих механизма играют важную роль в будущем Галактики и Вселенной.
В галактическом гало частицы темной материи имеют низкую плотность: порядка одной частицы на кубический сантиметр, — и достаточно большие скорости: около двухсот километров в секунду. Поскольку эти частицы ощущают только слабое взаимодействие, вероятность аннигиляции чрезвычайно мала. Однако по истечении двадцати трех космологических декад (1023 лет) из-за этих взаимодействий популяция частиц темной материи, населяющих гало, претерпит значительные изменения. При аннигиляции частицы темной материи обычно оставляют после себя более мелкие частицы с релятивистскими скоростями — настолько большими, что частицам удается преодолеть гравитационное притяжение Галактики. Таким образом, конечным результатом процесса аннигиляции является излучение массы-энергии галактического гало в межгалактическое пространство.
Поскольку наличием темной материи объясняется большая доля общей массы Вселенной, продукты аннигиляции от взаимодействий темной материи служат важной частью содержимого Вселенной в поздние эпохи, особенно между двадцатой и сороковой космологическими декадами. Остаточные продукты прямых аннигиляционных событий в галактических гало обеспечивают огромное разнообразие частиц, включая фотоны, нейтрино, электроны, позитроны, протоны и антипротоны.
Темную материю захватывают звездные остатки типа белых карликов. Темная материя галактических гало обеспечивает фоновое море частиц, непрерывно текущих сквозь космическое пространство. Эти частицы также проходят через все объекты, имеющиеся в галактике: звезды, планеты и, в настоящую космологическую эпоху, людей.
...
Однако время от времени частица темной материи вступает во взаимодействие с ядром какого-нибудь атома и тем самым лишает его некоторой доли энергии.
Если такое взаимодействие произойдет в недрах белого карлика, частица темной материи может остаться в гравитационной связи со звездой. По прошествии длительного времени популяция таких частиц внутри звездного объекта постепенно увеличивается. Время, необходимое для того, чтобы темная материя была захвачена в ходе именно такого процесса, много длиннее водородной части жизни звезд, которые почти все это время ведут жизнь звездных остатков. По мере увеличения в звездном ядре концентрации частиц темной материи возрастает вероятность аннигиляции этих частиц. В конце концов, звезда достигает устойчивого состояния, в котором аннигиляция в звездном остатке происходит с той же скоростью, с которой частицы захватываются из галактического гало.
Процесс захвата и аннигиляции темной материи служит жизненно важным источником энергии для белых карликов будущего. Эти звездные объекты являются остатками звезд, погибших после завершения реакций термоядерного синтеза в их недрах. В отсутствие дополнительного источника энергии белые карлики становились бы более холодными и тусклыми, пока их температура не сравнялась бы с фоновой температурой Вселенной. Однако благодаря энергии, которую они извлекают из аннигиляции темной материи, белые карлики могут излучать энергию на протяжении очень долгого времени. Полная мощность излучения одного белого карлика, обусловленная этим процессом аннигиляции, составляет приблизительно один квадрильон (1015) ватт. И хотя эта незначительная мощность примерно в сто миллиардов (1011) раз меньше мощности излучения Солнца, именно этот механизм производства энергии будет править Вселенной в будущем. Такая выработка энергии может продолжаться, пока галактическое гало остается целым — примерно на протяжении двадцати космологических декад 1020 лет) или в десять миллиардов раз дольше того периода, на протяжении которого Солнце будет сжигать водород.
Частицы темной материи, захваченные белыми карликами, в конечном итоге, аннигилируют в излучение, которое, в конце концов, начинает преобладать в фоновом поле излучения Вселенной.
В науке и философии ad hoc означает добавление к теории чуждых ей (т.е. не вытекающих из неё гармонично, не являющихся её следствием) гипотез, чтобы "спасти" её от опровержения. Ad hoc гипотезы компенсируют аномалии, не предвидимые теорией в её исходной форме. Учёные часто скептически относятся к теориям, которые требуют для своего поддержания частых корректировок, поскольку при этом страдает её фальсифицируемость. Ad hoc гипотезы часто характеризуют псевдонаучность направления.[1] Многие научные понятия возникли на основании гипотез и модификаций существующих теорий, но эти модификации отличаются от ad hoc гипотез тем, что они дают объяснения возникшим аномалиям и предлагают новые способы развития теории.
Ad hoc гипотезы не обязательно являются некорректными. Интересным примером явной поддержки ad hoc гипотез было добавление Альбертом Эйнштейном космологической постоянной к общей теории относительности, чтобы разрешить проблему существования статической Вселенной. Хотя позднее он называл эту идею своей «величайшей ошибкой», было установлено, что она довольно точно соответствует теории тёмной энергии.[2]