Подводные лодки проекта 615 — ВикипедияВ отечественном флоте в 1930-е годы изучались две схемы обеспечения работы дизелей под водой или, как их стали называть, схемы работы дизеля по замкнутому циклу: "РЕДО" С.А. Базилевского и "ЕД-ХПИ" В.С. Дмитриевского.
Первой в 1937 г. начали переоборудование подводной лодки XII серии под опытную энергетическую установку "РЕДО" (регенеративный единый двигатель особого назначения). Эта подлодка получила наименование С-92 и бортовой номер Р-1. Принцип работы установки "РЕДО" состоял в следующем: в подводном положении выхлопные газы дизеля очищались от механических примесей и влаги, охлаждались и направлялись обратно на всасывающий коллектор дизеля. Затем к ним добавлялся газообразный кислород. Избыток выхлопных газов отсасывался компрессором и сжимался, при этом углекислый газ, составлявший около 75 % объема избыточных газов, превращался в жидкую углекислоту, которая сливалась в специальные баллоны и периодически удалялась за борт. Газообразный остаток, в основном кислород, снова возвращался в цикл. Осенью 1938 г. подлодка С-92 вышла на испытания, которые продолжались более двух лет. К началу Великой Отечественной войны они еще не закончились, и подводную лодку законсервировали. В связи с тем, что к окончанию войны и в первые послевоенные годы были разработаны и проверены в действии более простые циклы единых двигателей, к испытаниям "РЕДО" не возвращались. После войны подводная лодка использовалась для отработки других типов единых двигателей.
В 1938-1939 гг. ОКБ НКВД разработало проект подводной лодки с опытной единой энергетической установкой "ЕД-ХПИ" (единый двигатель с химическим поглотителем). Принцип работы установки заключался в следующем. Выхлопные газы из дизеля поступали в газоохладитель, где они охлаждались и освобождались от водяных паров и частично от механических примесей. Далее они направлялись в специальные химические фильтры, где отделялся углекислый газ и окись углерода. Затем производилось дальнейшее освобождение выхлопных газов от избыточной влаги, они обогащались газифицированным кислородом, и в дизельный отсек поступала газовая смесь, близкая по своему составу к обычному воздуху.
Подводную лодку проекта 95 с "ЕД-ХПИ" спустили на воду в Ленинграде 1 июня 1941 г. С началом войны ее отбуксировали в Горький, а затем в Баку. Ходовые испытания закончили после войны, а в состав ВМФ корабль приняли только в 1946 г. Однако все мытарства окупились сторицей. В первой половине 1950-х гг. в состав отечественного флота вошло 30 подводных лодок проекта А615 с единым двигателем, созданным с учетом опыта эксплуатации лодки проекта 95. Советский Союз стал единственной военно-морской державой, серийно строившей корабли с подобной силовой установкой.
Второй страной, где велись интенсивные работы по созданию подводных лодок с единым двигателем внутреннего сгорания, являлась Германия. У немцев такой двигатель назывался "крейслауф" - круговорот. Создать работоспособный дизель, работающий по замкнутому циклу, немцы смогли в годы Второй мировой войны. В 1943 г. командование германских ВМС приняло решение построить экспериментальную подлодку XVII серии с дизелем "крейслауф" мощностью 1500 л. с. В 1944 г. ее заложили под обозначением U-798, но до окончания войны не успели спустить на воду.
После второй аварии лодкам проекта А615 было запрещено до выяснения причин плавать при работе дизелей по замкнутому циклу.
После расследования этой аварии на заводах-строителях, модернизировалась кислородная система, дополнительно устанавливалась: автоматическая аппаратура, измеряющая состав кислорода и углекислоты; система пенотушения и другие технические средства. Именно применение жидкого кислорода в качестве окислителя топлива вызывало эксплуатационно-технические сложности и повышало пожароопасность. Из-з этого на базе проекта А615 был разработан модернизированный — 637, где вместо жидкого кислорода использовался продукт Б-2. Для его отработки было начато переоборудование последней лодки проекта А615 М-361 (работы завершены не были).
На Черноморском флоте также затонула М-351, но без потерь среди личного состава.
Громоздкость и материалоёмкость — основной недостаток поршневых вариантов двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.
Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и особые виды рабочего тела — водород, гелий.
Тепло подводится не к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплообменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогостоящих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям весьма нетривиальная задача. Чем больше площадь теплообмена, тем большие потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, — двигатель медленно откликается на изменение теплового потока, подводимого к цилиндру и не сразу может выдать нужную мощность при запуске.