Реклама Google — средство выживания форумов :)
«Это большой и волнительный шаг в нашем проекте, потому что топливная пара кислород-водород — это очень взрывоопасная смесь, мало кто в мире умеет работать с такими двигателями ... только эта топливная пара обеспечит выполнение всех поставленных задач. Поэтому мы изначально ставили задачу перехода к кислороду и водороду, было много сомнений, потому что это очень сложно. Не всё сразу получилось, но запуск состоялся, центральное тело охлаждаемое, уже отработало. Без преувеличения, это мировой уровень. Нет ни одной научной публикации, которая бы описывала пуск демонстратора двигателя с охлаждаемым центральным телом на кислороде и водороде, поэтому можно сказать, что эти два пуска, которые состоялись, — первые в мире», — прокомментировал испытания Сергей Ваулин, проректор ЮУрГУ по научно-образовательным центрам и комплексам.
Реализацией этой части проекта «Корона» занимаются НОЦ «Передовые производственные технологии и материалы», «Государственный ракетный центр имени академика В. П. Макеева» и АО «Научно-исследовательский институт машиностроения». Испытанная установка-демонстратор состоит из 16 двигателей и системы управления с искусственным интеллектом. Разработка не имеет аналогов в мире. Благодаря усилиям ученых удалось уменьшить диаметр ракетного двигателя и снизить его массу. В планах — откалибровать все параметры установки и масштабировать ее до реальных размеров.
Итогом всех работ должна стать ракета многократного использования. Одноразовых деталей в ней не будет. Конструкция предусматривает одну ступень, то есть запуск будет происходить без отделения ступеней, как это происходит сейчас.
Ученые много лет пытаются решить проблемы охлаждения центрального тела КВРД. Они пробовали применять топливные пары спирт-кислород, метан-кислород. В основе всех исследований лежала регенеративная система охлаждения. Компоненты жидкого топлива, находясь в криогенном состоянии, пропускаются по каналам охлаждения перед попаданием в камеру сгорания.
Российским ученым удалось создать первый в мире рабочий КВРД на водородно-кислородном топливе с системой охлаждения. Использование жидкого водорода с температурой -253°C облегчило задачу подбора материала для клиновидной части двигателя, которая должна быть невероятно жаростойкой.
Стартовая масса РН составляет порядка 300 тонн. Масса выводимой полезной нагрузки от 7 до 12 тонн. Взлет и посадка «Короны» должны происходить с использованием упрощенных стартовых сооружений, помимо этого прорабатывается вариант запусков многоразовой ракеты с морских платформ. Для взлета и посадки новая РН сможет использовать одну и ту же площадку. Время подготовки ракеты к очередному запуску составляет всего около суток.
Следует отметить, что углепластиковые материалы, необходимые для создания одноступенчатых и многоразовых ракет, применяются в аэрокосмической технике еще с 90-х годов прошлого века. С начала 1990-х годов проект «Корона» прошел долгий путь развития и значительно эволюционировал, надо ли говорить, что изначально речь шла об одноразовой ракете. При этом в процессе эволюции конструкция будущей ракеты становилась одновременно проще и совершеннее. Постепенно разработчики ракеты отказались от использования крыльев и внешних топливных баков, придя к пониманию того, что главным материалом корпуса многоразовой ракеты будет именно углепластик.
В последней на сегодняшний день версии многоразовой ракеты «Корона» ее масса приближается к отметке в 280-290 тонн. Столь большая одноступенчатая ракета-носитель требует наличия высокоэффективного жидкостного ракетного двигателя, который работал бы на водороде и кислороде. В отличие от ракетных двигателей, которые ставятся на отдельных ступенях, подобный ЖРД должен эффективно работать в различных условиях и на различной высоте, включая взлет и совершение полета за пределами атмосферы Земли. «Обыкновенный ЖРД с соплами Лаваля эффективен только на определенных диапазонах высот, – говорят макеевские конструкторы, – по этой причине мы пришли к необходимости использовать на ракете клиновоздушный жидкостный двигатель». Газовая струя в подобных ракетных двигателях сама подстраивается под давление «за бортом», к тому же они сохраняют свою эффективность как у поверхности Земли, так и достаточно высоко в стратосфере.
Для безопасного полета в атмосфере Земли углепластиковая силовая конструкция «Короны» будет защищена теплозащитной плиткой, которая ранее была разработана в ВИАМ еще для космического корабля «Буран» и с тех пор прошла существенный путь развития. «Главная тепловая нагрузка на «Корону» будет концентрироваться на ее носовой части, где применяются высокотемпературные элементы теплозащиты, – отмечают конструкторы. – В то же время расширяющиеся борта ракеты-носителя имеют больший диаметр и расположены под острым углом к потоку воздуха. Температурная нагрузка на эти элементы меньше, а это, в свою очередь, позволяет нам применять более легкие материалы. В результате достигается экономия порядка 1,5 тонн веса. Масса высокотемпературной части ракеты не превышает у «Короны» 6 процентов от общей массы теплозащиты. Для сравнения, у космических челноков «Шаттл» на нее приходилось более 20 процентов».