Реклама Google — средство выживания форумов :)
Для повторного использования материальной части необходимо
выполнение, как минимум, следующих условий: во-первых, обеспечить ее
возвращение на Землю в виде, допускающем повторное
использование, и, во-вторых, эта материальная часть должна быть
конструктивно приспособлена для повторного использования. Выполнение обоих
условий сопряжено с увеличением массы конструкции, что,
естественно, при фиксированном технологическом уровне снижает
относительную массу полезного груза.
На первых этапах развития ракетной техники относительная
масса выводимого полезного груза составляла 1...2 %, что
практически исключало возможность введения дополнительных масс в
конструкцию ракетных блоков для их спасения. И сама
конструкция, как и все оборудование, были ориентированы на одноразовое
использование, что находило отражение в конструктивном их
исполнении. И только со временем, когда благодаря значительному
увеличению удельного импульса двигательных установок и
улучшению совершенства конструкции массовая отдача увеличилась
до 4 % и более, появилась первая предпосылка для введения в
конструкцию РН элементов, обеспечивающих спасение
материальной части. Очевидно, что относительная масса полезного груза
при этом должна снизиться, чему свидетельством является
Space Shuttle (США) с частично многоразовой материальной
частью, относительная масса полезного груза у которой в два с
лишним раза меньше по сравнению с аналогичными показателями у
одноразовых РН.
Несколько позже ключевые компоненты РН (двигатели и СУ) по
разным соображениям стали создаваться в многоресурсном
исполнении, что следует расценивать как вторую предпосылку к созданию
многоразовых аппаратов. Это представляется весьма значимым, так
как именно двигатели и оборудование СУ, являющиеся наиболее
дорогими элементами, представляют наибольший интерес для
повторного использования.
Следует начать с того, что ничего неожиданного и удивительного в реактивной посадке первой ступени Falcon-9 нет. Это всё давно просчитывалось, в том числе и у нас в стране. По теме «Подъём» прорабатывалась идея создания многоразовых ракет с реактивной посадкой ракетных блоков, а в КБ «Салют» предложили революционную на тот момент идею не только реактивной посадки, но и формирование обратной петли с возвращением ракетного блока к месту старта. Так что такие проработки велись давно и у нас в стране и в США. При этом в США было разработано и испытано много полётных демонстраторов, где самым замечательным был «Дельта-Клиппер», который в воздухе выделывал практически фигуры высшего пилотажа с последующей точной реактивной посадкой. В принципе специалистам, реально занимающимися вопросами многоразовости, давно известны возможности реактивной схемы посадки и те потери массы полезного груза, к которым ведёт применение такой схемы многоразовости. Единственное, что было не известно, так это стоимость регламентно-восстановительных работ для осуществления повторных запусков с заданной надёжностью.
Правда ступень немного закоптилась. Тут следует пояснить одну интересную вещь. Эта копоть не от того, что ступень падая горела в атмосфере, а от того, что были включены двигатели для торможения при входе в атмосферу. Это торможение делается для того, чтобы снизить тепловые потоки, приходящие на ступень (скорее всего именно на стенки баков). Тепловые потоки зависят от скорости полёта примерно пропорционально скорости в кубе. Поэтому торможение на 30% даёт снижение тепловых потоков примерно в три раза. По расчётам примерно такое торможение было при спуске многоразовой ступени Falcon-9. Так вот именно при этом торможении сажа от работающих двигателей закоптила всё вокруг.
...
В ангаре мы видим, что со ступени сняли технологические люки для осмотра двигателей и коммуникаций в хвостовом отсеке. Бросается в глаза линия раздела баков с закопчённым нижним баком, потом конструкция почти белая, а потом опять сверху копоть. Это просто на нижней части бака окислителя был иней. Его скорее всего тоже закоптило сажей, но он впоследствии растаял и сажа стекла вниз или иней просто отвалился.
Видно, что сажа на двигателе осела достаточно плотно и смывать её будет достаточно сложно. В принципе специалисты по двигателям на данный момент не могут дать вразумительный ответ по поводу сажи. При проведении многократных испытаний на одном двигателе, его от сажи зачастую не чистят. Но при его поставке на ракету и для визуального осмотра всё чистят до блеска в обязательном порядке. В итоге посмотрим, что будет делать с сажей на двигателях SpaceX. Панели донного экрана в принципе съёмные и могут очищаться автономно. Как SpaceX будет производить чистку хвостового отсека не понятно, возможно потребуется снятие двигателей. При этом требуется достаточно серьёзно относиться к вопросам очистки торцевой поверхности хвостового отсека. В полёте пламя двигателя очень хорошо излучает энергию и степень черноты поверхности может иметь решающее значение для не прогара конструкции. Если посмотреть на хвостовые отсеки блоков РН «Союз», то можно увидеть блестящие поверхности с торца и даже сбоку. Это полированные листы титана на торце центрального блока и хромированные стальные листы в остальных местах. Листы устанавливаются на асбестовую подложку.
Далее мы видим состояние цилиндрической поверхности первой ступени. Видно, что покрытие ступени достаточно серьёзно пострадало от воздействия температуры, а может быть и сажи. При нагреве, применяемая на Falcon-9 эмаль начала отходить от основания, частью отлетела и пошла пузырями. Кстати, покрытие тут выступает в качестве индикатора. Видно, что был незначительный нагрев, не приведший к изменению цвета эмали на металлических конструкциях. Зато резко бросается в глаза состояние на композитном межступенчатом переходнике. В принципе в основном на нём эмаль и стала отходить. Это связано с тем, что коэффициент теплопроводности композита хуже, чем у металлов, что в свою очередь приводит к перегреву эмали. Такую эмаль необходимо восстанавливать. Возможен как мелкий ремонт, так и полная перекраска. Люди с наиболее острым зрением могут увидеть или не увидеть изменение цвета эмали в коричневатый оттенок на межступенчатом переходнике, что дополнительно может свидетельствовать о перегреве эмали. В проблему восстановления эмали можно решить радикальным путём – просто не красить ступень, что успешно применяли на РН «Протон». Правда необходимы покрытия, которые надёжно защитят конструкцию от коррозии и эрозии на длительное время в условиях постоянной эксплуатации.
Проблема с сажей будет решаться либо конструктивно-технологическими мерами по упрощению очистки, либо кардинально заменой керосина на метан. Дальше следует ответить на вопрос о годности двигателей для многоразового полёта. По опыту, выбранная схема двигателей позволяет обеспечить большой ресурс конструкции без падения надёжности. По словам Илона Маска они уже отрабатывали двигатель на четырёхкратный ресурс для десятикратного применения. Теоретически этого достаточно. Опять же в качестве серьёзной проблемы может возникнуть сажа в двигателе. Но раз SpaceX испытывали двигатель на более чем 40 полётных циклов, то наверно они знают, что это не проблема, либо что-то утаивают.
По имеющейся информации ступень сфотографирована при транспортировке на стартовую площадку SLC-40 для проведения прожига, который состоится 14 января. Видно, что в SpaceX не стали очищать ступень от сажи. Есть мнение, что таким образом SpaceX показывают, что это именно та приземлившаяся ступень без замены элементов. Это достаточно логичное объяснение. Но если присмотреться, то можно увидеть, что ступень немного помыли и сажа блестит на солнце. Также есть вероятность, что пытались очистить двигатели. Видно, что один из двигателей изнутри немного белее остальных. Это может служить свидетельством того, что его хотели очистить от сажи, может быть для пробы. В итоге не понятно, почему ступень в саже – специально, решили сэкономить, чистить не надо в принципе или попробовали и не получилось.
Markusic’s ideal reusable rocket wouldn’t look anything like Falcon 9, though. Rather than adhering to the vertical take-off and landing paradigm we’ve already seen from SpaceX and Blue Origin, Markusic is intrigued by the idea of a vehicle based on “aircraft heritage … that exploits the atmosphere we live in,” he says. This hypersonic rocket plane, augmented with air-breathing propulsion, would return to Earth on a controlled glide, and “gradually bleed off energy” instead of burning extra fuel to slam on the brakes.
The argument for reusability only grows stronger as you approach the higher-end payload mass of the market, says Forecast International analyst Bill Ostrove. “The more expensive it is to build a rocket, the easier it's going to be to recoup your expenses by spending a little bit extra on rocket construction to make it reusable,” he says. SpaceX’s Falcon Heavy illustrates this point well: Heavy has three times the lift of Falcon 9, and yet is just 33 percent more expensive to build thanks to its flight-proven boosters. If SpaceX can hit a proper launch cadence with Heavy (if being the key word here, given the uncertainty of that side of market), it can squeeze some significant value out of those assets.
At the same time, reusability doesn’t necessarily have the same financial draw for companies building smaller launch vehicles with lower capex. “Their argument is that they're trying to get the cost of production down as much as possible,” Ostrove says. “One of the ways of doing that is simplifying the rockets and making them easier to build, but also building as many of them as they possibly can to take advantage of economies of scale.” Rocket Lab, for example, hopes to spread out its fixed costs by launching anywhere from 50 to 120 times per year.
Blue Origin CEO Bob Smith believes it’s just a matter of time before reusability becomes commonplace across all launch paradigms. “With the launch rate, availability and overall cost structure being much better … [the launch industry] is going to be dominated by reusability. It just has to be — there’s no other way,” Smith asserts.
One of the reasons circles back to the issue of reliability, arguably the launch industry’s greatest downfall. A common misconception is that launching on a previously flown asset is inherently more risky. In reality, increased reliability and reusability go hand in hand, Smith says. It is significantly more expensive up front to design and build a reusable rocket like New Glenn versus an expendable equivalent — which means any launch failure is that much more costly. It follows then that the economics of New Glenn — which must fly at least 25 times to hit Blue Origin’s targets — are dependent on the vehicle being very safe.
Of course, customers will also appreciate the added reliability, especially those whose entire business case rests on a certain spacecraft making it to orbit in one piece. There’s a potential cost benefit too, although that has not fully materialized yet. Other than some discounts for the first brave souls to ride on a flight-proven Falcon 9, SpaceX, for one, has maintained its pricing structure as it recoups its massive Research and Development (R&D) investments. But eventually, Smith expects competition from reusable vehicles to drive lower prices throughout the whole industry.