Иногда, глядя с крыльца на двор и на пруд, говорил он о том, как бы хорошо было, если бы вдруг от дома провести подземный ход или чрез пруд выстроить каменный мост, на котором бы были по обеим сторонам лавки, и чтобы в них сидели купцы и продавали разные мелкие товары, нужные для крестьян. При этом глаза его делались чрезвычайно сладкими и лицо принимало самое довольное выражение; впрочем, все эти прожекты так и оканчивались только одними словами.
В XXI веке предстоит ожесточенная экономическая и политическая борьба за место спутников связи на ГСО. Космический аппарат, выведенный на ГСО, имеет период обращения равный периоду вращения Земли, и плоскость орбиты практически совмещена с плоскостью Земного экватора. Подспутниковая точка имеет свою географическую долготу – рабочую точку и нулевую широту.
Первые космические аппараты были выведены на ГСО в 60-х годах. Всего с тех пор на ГСО выведено около 800 КА и каждый год поставляет в среднем по 20 новых.
По данным на 2008 год на геостационарной орбите находились более 1150 объектов. Среди них управляемых КА около 240, а остальные уже отказавшие разгонные блоки и другие объекты.
В среднем масса полезного груза, выводимого носителями на околоземные орбиты, составляет 3–4 % от стартовой массы носителя. Для геостационарных орбит масса КА составляет всего 0,3 – 0,5 % от стартовой массы носителя и разгонного блока.
Выведение КА на ГСО, как правило, производится трехступенчатыми носителями с последующим использованием разгонных блоков.
Геостационарная орбита, как наивыгоднейшее место для размещения систем спутниковой связи, в ближайшие 20 лет исчерпает свой ресурс.
Неизбежна жесткая международная конкуренция. Международные политические соглашения будут не способны решить эту проблему даже с учетом дальнейшего процесса развития информационных технологий, ибо каждому КА на ГСО соответствуют разрешенные площади обслуживания на поверхности Земли.
Одним из возможных решений может оказаться создание на ГСО тяжелых многоцелевых платформ. Обозревая почти 1/3 поверхности планеты, такая многоцелевая платформа будет способна заменить многие десятки современных спутников связи. Платформа будет использовать мощную солнечную электростанцию. Мощность станции составит сотни или даже тысячи киловатт.
Большие антенны параболические или активные фазированные решетки способны создать у поверхности Земли любое заданное значение ЭИИМ (эквивалентную изотропную излучаемую мощность) и принимать информацию от Земных абонентов, использующих приборы по габаритам, не превышающим лучшие современные мобильники. Возможность размещения на тяжелых геостационарных платформах многих десятков, а может быть и сотен ретрансляторов различных диапазонов позволит владельцам таких платформ торговать стволами связи любого назначения для любого района.
Тяжелые, многоцелевые платформы будут коммерчески выгодны и послужат глобальному информационному сближению народов. Разработка и создание подобных геостационарных систем необходима человечеству не в далеком будущем, а в ближайшие 25-30 лет.
Проблема создания и эксплуатация тяжелых геостационарных платформ может быть быстро решена при кооперации космической техники России и Европы. Однако космические станции на ГСО могут быть эффективно использованы и в военных целях, подавления агрессора в локальных конфликтах и в ситуациях типа «звездных войн». Об этом ниже.
С сожалением надо отметить, что в начале 90-х годов прошлого века в России был разработан реальный уникальный проект первой в мире тяжелой универсальной платформы на ГСО. Масса предлагаемой платформы по проекту достигла 20т. Вывод на орбиту обеспечивался прошедшей успешные летные испытания ракетой носителем «Энергия». В 1989–1990 годах РКК «Энергия» при поддержке военно-промышлен-ной комиссии Совета Министров СССР делала предложения Германии, Франции, Европейскому космическому агентству о сотрудничестве и совместной работе по созданию универсальной тяжелой космической платформы на ГСО. В те годы только Россия, обладавшая уникальным носителем «Энергия» могла решить эту задачу. Весьма детальная разработка конструкции платформы и техники выведения вызвали большой интерес у ведущих немецких и французских фирм. Начались совместные работы. Однако либерально-рыночные реформы 90-х годов разрушили организацию и лишили всякой государственной поддержки производство носителей «Энергия». Продолжение работ над тяжелой космической платформой без носителя стало бессмысленным.Страница не найдена | Институт истории естествознания и техники им. С.И. Вавилова РАН
// www.ihst.ru
"Чистое железо в лунном грунте - реголите - обнаружили сразу. Оно покрывает тончайшей (в одну десятую микрона!) пленкой большую часть его поверхности. Ученые предположили, что стоит этому самому лунному железу оказаться в земных условиях, то оно тут же окислится. Сомнений, в общем-то, не было, но решили убедиться на опыте: извлекли кусочек реголита из камеры, где он хранился в «космической среде», и оставили на воздухе. Прошла неделя, другая, месяц, потом почти четыре месяца, а приборы неизменно отмечали, что лунный металл не окисляется, не сгорает.
«Не может быть, - сказал академик А. Виноградов, когда ему сообщили об этом сюрпризе. - Проверьте еще раз и найдите свою ошибку. Это же элементарно: железо, да еще в такой степени измельченное должно неизбежно сгорать».
Эксперименты повторяли снова и снова. И с той же настойчивостью лунный грунт «сигналил» о наличии чистого, неокисленного металла.
О странном поведении реголита академик А. Виноградов упомянул в докладе о предварительных результатах исследований на Президиуме Академии наук СССР. Академик М. Келдыш, который вел заседание, заметил: «Если вы поймете, как получается на Луне такое железо, и научите нас его производить в земных условиях, то это окупит все расходы на космические исследования». Он распорядился не жалеть лунный грунт для исследований, помог привлечь к ним широкий круг специалистов из других исследовательских учреждений.
К работе приступили сотрудники Института геохимии и аналитической химии имени В. И. Вернадского АН СССР, Института общей и неорганической химии имени Н. С. Курнакова АН СССР, Института геологии рудных месторождений, петрографии, минералогии и геохимии АН СССР и несколько позднее- Института металлофизики АН УССР....
....Парадоксально, но факт: на поверхности можно «запрятать» секрет гораздо надежнее, чем в глубине. Так и сделала природа с лунным реголитом. Чистое, восстановленное железо занимает здесь тончайший слой толщиной порядка 20 ангстрем. Дальше обыкновенные окислы. Если сравнить с земными образцами, где сверху коррозия, а под ней - чистый металл, то на Луне все наоборот. Как только начинают «прощупывать» приборами атомы, лежащие чуть глубже этого таинственного слоя, то никаких чудес - обыкновенная картина окисленного металла..." Welcome To Your Death - Про лунное железо
"Солнечный ветер, а точнее, содержащиеся в нем протоны обусловили процесс амортизации лунного грунта. Известно, что любые физические объекты, если они состоят из кристаллов, особенно из крупных кристаллов, легко разрушаются. Так вот, под воздействием солнечного ветра происходит своеобразное остеклование поверхности, поэтому грунт становится очень плотным и не подвержен окислению даже в земных условиях...
"Когда я делал доклад по этой теме в Калифорнийском технологическом институте, который являлся головной организацией по исследованию лунных пород, - вспоминает Олег Богатиков, - там присутствовал один из отцов-основателей лунной геохимии профессор Джери Вассербург. После моего выступления он подошел ко мне и сказал: "Все это, конечно, интересно, но этого не может быть. Мы, американцы, когда получили лунный грунт, раздали его в пятьдесят лучших лабораторий мира, и эти лаборатории проводили всевозможные эксперименты с ним, но явления, о котором вы говорите, они не обнаружили". АиФ-Новости | Луна может покинуть околоземную орбиту и отправиться в свободное космическое плавание | АиФ.Ру
Американские образцы, изученные в советских лабораториях, оказались еще хитрее, слоёными: чистое железо - окислы - снова чистое железо "НОВОСТИ КОСМОНАВТИКИ" :: Просмотр темы - датчик Венера-1