Срок жизни спутника Starlink на орбите 550 км составляет примерно 5 лет, после чего запас рабочего тела криптона заканчивается, и спутник либо по команде производит снижение орбиты до плотных слоев атмосферы, либо, в случае потери связи с Землей, снижается постепенно, тормозится остатками атмосферы, и сгорает (подробнее об этом будет написано в разделе о космическом мусоре).
Спутники Starlink впервые в мире производятся практически в режиме крупно серийного производства. По данным SpaceX, ее производственные мощности позволяют производить до 120 спутников Starlink в месяц. Отметим, что средний срок производства спутника связи для геостационарной орбиты составляет сейчас 2-3 года.
Безусловно такой темп производства сильно сокращает цикл испытаний и проверок, а также отметим, что для экономии средств в спутнике используются более дешевые комплектующие и компоненты, в частности, дорогой ксенон заменен на значительно более дешевый криптон в качестве рабочего тела ЭРД.
Таким образом, снижение требований к комплектующим и циклу наземных испытаний отражается и на ресурсе, и на надежности спутников, конструкция которых дорабатывается по результатам испытаний в космосе.
Министерство обороны США планирует еще больше полагаться на спутники в рамках своей новой военной доктрины «All Domain Operations». Стратегия потребует, чтобы воздушные, наземные, морские, космические и киберпространственные активы были напрямую связаны друг с другом. Они будут передавать данные и информацию между собой и, возможно, даже активировать оружие друг друга. Ключевым фактором будет такая группировка спутников, как SpaceX Starlink, которая достаточно велика, чтобы противостоять атакам и продолжать работу.
По его оценкам, новая система, которую Хамфрис называет «fused LEO navigation», будет использовать мгновенные вычисления орбиты и времени для определения местоположения пользователей с точностью до 70 сантиметров (для сравнения, большинство систем GPS в смартфонах, часах и автомобилях имеют точность до нескольких метров).
Но ключевым преимуществом для Пентагона является то, что объединенную LEO навигацию будет значительно труднее заблокировать или обмануть. Мало того, что его сигналы намного сильнее на уровне земли, но и антенны для его микроволновых частот примерно в 10 раз более направленные, чем антенны GPS. Это означает, что будет легче уловить истинные спутниковые сигналы, чем сигналы от глушителя. «По крайней мере, это надежда», — говорит Хамфрис.
Согласно расчетам Хамфриса и Яннуччи, их объединенная навигационная система LEO может обеспечить непрерывное навигационное обслуживание 99,8% населения мира, используя менее 1% пропускной способности канала связи Starlink и менее 0,5% ее электрической энергии.
«Я действительно думаю, что это может привести к более надежному и точному решению, чем только GP. — говорит Тодд Уолтер из лаборатории GPS Стэнфордского университета, который не принимал участия в исследовании. — И если вам не нужно модифицировать спутники Starlink для этого, это, безусловно, быстрый и простой способ».
Также надо отметить, что приписываемые иногда в интернете сети Starlink способности выступать в роли космической сети РЛС (радиолокационных станций), не выдерживают самой элементарной критики. РЛС обнаружения целей работают на гораздо более низких частотах L- и S-диапазонов (то есть 1-2 ГГц), а не в Кu- и Ка-диапазонах Starlink (11-30 ГГц). Более того, основным фактором, ограничивающим технические характеристики локаторов, является малая мощность принимаемого сигнала. При этом мощность принимаемого сигнала убывает как четвертая степень дальности (то есть, чтобы увеличить дальность действия локатора в 10 раз, нужно увеличить мощность передатчика в 10000 раз). Учитывая, что радиус действия транспортируемых радиолокаторов (самолетных) как правило, до 200 километров, при максимальной разрешающей способности 10 метров, то для РЛС на орбите Земли высотой 550 км потребуются крайне высокие мощности, недостижимые для спутника весом менее 250 кг.©
Компания Capella Space планирует развернуть 36 спутников, оснащённых радиолокационной станцией (РЛС) с синтезированной апертурой. Предполагалось, что масса одного спутника составит порядка 40 килограмм. Система должна позволить получение радиолокационных (РЛ) изображений земной поверхности с разрешением 50 сантиметров.
Более того, предположительно система способна получать изображения разрешением 25 сантиметров и выше, но эта возможность для гражданских потребителей пока заблокирована американским законодательством.
В декабре 2018 года компания Capella Space запустила на орбиту свой первый тестовый спутник Denali. Запуск был осуществлён с помощью ракеты-носителя (РН) Falcon 9 компании SpaceX с базы ВВС США Ванденберг (Калифорния).
Выводы
Коммерциализация космоса развивается высочайшими темпами, как в части вывода полезных нагрузок на орбиту, так и в части создания искусственных спутников Земли различного назначения. Можно заметить, что тенденция коммерциализации космоса наметилась в начале двухтысячных годов и приобрела взрывной характер в последнее десятилетие. В совокупности это позволило появиться оборудованию, технологиям и услугам, совсем недавно недоступным не только для коммерческих, но и для государственных заказчиков.
В этом свете перспектива развёртывания вооружёнными силами США сотен или даже тысяч спутников разведки и связи, а в дальнейшем и спутников системы противоракетной обороны (ПРО), уже не вызывает особых сомнений.
Что это означает для нас в практическом плане?
Можно утверждать, что с определённого момента, по мере развертывания всё большего числа разведывательных спутников различного класса и назначения, а также улучшения их технических характеристик, избежать обнаружения из космоса многих типов вооружений станет практически невозможно.
Возможность глобального, круглосуточного и всепогодного получения разведывательных данных, в масштабе времени, близком к реальному, позволит осуществлять удары высокоточным оружием и беспилотными летательными аппаратами (БПЛА) на всю глубину территории противника не только по стационарным, но и по подвижным целям, перенацеливая средства поражения в полёте.
Под угрозой окажутся подвижные грунтовые ракетные комплексы (ПГРК), составляющие один из элементов российских сил ядерного сдерживания (СЯС), а надводные корабли традиционной компоновки потеряют малейшую возможность затеряться в глубинах океана, а значит, дальняя авиация противника всегда будет иметь инициативу и сможет обеспечить необходимую концентрацию сил для удара противокорабельными ракетами (ПКР), достаточную, для преодоления противовоздушной обороны (ПВО) авианосных и корабельных ударных групп (АУГ и КУГ).